# Deleting variables

### Giulia Maineri

Università degli studi di Milano

April 2022

シへで 1/60

E

・ロト ・ 四ト ・ ヨト ・ ヨト …

# Table of Contents

| 1  | BookMethod                                                      |
|----|-----------------------------------------------------------------|
| 2  | All variables                                                   |
| 3  | No $\vec{E}_T^{miss}$                                           |
| 4  | No $\vec{E}_T^{miss}$ significance                              |
| 5  | No <i>m<sub>II</sub></i>                                        |
| 6  | No <i>m</i> <sub><i>T</i></sub>                                 |
| 7  | No $\Delta \Phi(ec{E}_T^{miss},ec{p}_T^{\prime \prime \gamma})$ |
| 8  | No $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest})$         |
| 9  | No $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$      |
| 10 | No $ec{ ho}_T^\gamma$                                           |
| 11 | No $ec{p}_T^{balance}$                                          |
| 12 | ROC comparisons                                                 |
| 13 | Variable ranking                                                |

### BookMethod

Trees training was done with the following options:

- !H; in order not to print a method-specific help message
- !V; necessary to deactivate "verbose mode", which prints explanations of what's going on
- NTrees=850; number of trees in the forest
- MinNodeSize=5%; minimum percentage of training events required in a leaf node
- MaxDepth=3; maximum depth of the decision tree allowed

・ロト ・ 四ト ・ ヨト ・ ヨト …

- BoostType=AdaBoost; boosting type
- AdaBoostBeta=0.2; learning rate for AdaBoost algorithm
- SeparationType=GiniIndex; separation criterion for node splitting
- nCuts=20;number of grid points in variable range used in finding optimal cut in node splitting

# All variables

## Classifier output distribution-Test and training sample

#### Figure 1: Output distribution

#### Figure 2: Overtraining control



#### Figure 3: ROC curve



AMS

#### Figure 4: AMS



▲ロト ▲園 ト ▲ ヨト ▲ ヨト ― ヨー のへ(で)

No 
$$\vec{E}_T^{miss}$$

## Classifier output distribution-Test and training sample

#### Figure 5: Output distribution

#### Figure 6: Overtraining control



#### Figure 7: ROC curve



AMS

#### Figure 8: AMS



E

・ロト ・日下 ・ヨト

< ∃⇒



## Classifier output distribution-Test and training sample

#### Figure 9: Output distribution

#### Figure 10: Overtraining control



#### Figure 11: ROC curve



16 / 60

э

AMS

#### Figure 12: AMS



# No *m*<sub>//</sub>

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

## Classifier output distribution-Test and training sample

#### Figure 13: Output distribution

#### Figure 14: Overtraining control

イロト イポト イヨト イヨト



#### Figure 15: ROC curve



AMS

#### Figure 16: AMS



# No *m*<sub>*T*</sub>

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

## Classifier output distribution-Test and training sample

#### Figure 17: Output distribution

#### TMVA response for classifier: BDT00 Signal xp / Np (N/L) Background 3 2 1 n -0.4 -0.3 -0.2 -0.1 -0.5 0 0.1 0.2 0.3 BDT00 response

#### Figure 18: Overtraining control



#### Figure 19: ROC curve



AMS

#### Figure 20: AMS



No  $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{ll\gamma})$ 

#### Figure 21: Output distribution

#### Figure 22: Overtraining control



#### Figure 23: ROC curve



AMS

#### Figure 24: AMS



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

No  $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest})$ 

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 - のへで

#### Figure 25: Output distribution

#### Figure 26: Overtraining control

イロト イポト イヨト イヨト



#### Figure 27: ROC curve



AMS

#### Figure 28: AMS



No 
$$\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$$

シックシード (中下・(中下・(日下))



#### Figure 30: Overtraining control



#### Figure 31: ROC curve



AMS

#### Figure 32: AMS



No 
$$ar{m{
ho}}_{T}^{\gamma}$$

シックシード (中下・(中下・(日下))

#### Figure 33: Output distribution

#### Figure 34: Overtraining control

イロト イポト イヨト イヨト



#### Figure 35: ROC curve



AMS

#### Figure 36: AMS



No 
$$\vec{p}_T^{balance}$$

### Classifier output distribution-Test and training sample

#### Figure 37: Output distribution

#### Figure 38: Overtraining control



#### Figure 39: ROC curve



AMS

#### Figure 40: AMS



# ROC comparisons

# **ROC** Comparison

#### Figure 41: ROC Comparison

Comparison



# **ROC** comparison



▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

#### Figure 43: ROC Comparison - Important variables



# Variable ranking

| deleted variable                                                | AMS     | $\Delta AMS$ |
|-----------------------------------------------------------------|---------|--------------|
| none                                                            | 2.99522 | 0            |
| E <sup>miss</sup>                                               | 2.93307 | 0.06215      |
| sigE <sup>miss</sup>                                            | 2.8162  | 0.17902      |
| $m_{II}$                                                        | 2.87348 | 0.12174      |
| m <sub>T</sub>                                                  | 2.5651  | 0.39912      |
| $\Delta \Phi (ec{E}_T^{miss},ec{ ho}_T^{\prime \prime \gamma})$ | 2.92392 | 0.0713       |
| $\Delta \Phi(ec{E}_T^{miss}, ec{p}_T^{closest})$                | 2.87644 | 0.11878      |
| $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$         | 2.88721 | 0.10801      |
| $\vec{p}_T^{\gamma}$                                            | 2.48571 | 0.50951      |
| $\vec{P}_T^{balance}$                                           | 2.94389 | 0.05133      |

Table 1: AMS values deleting variables one a time

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| deleted variable                                        | AMS     | $\Delta AMS$ |
|---------------------------------------------------------|---------|--------------|
| none                                                    | 2.99522 | 0            |
| $ec{ ho}_T^\gamma$                                      | 2.48571 | 0.50951      |
| m <sub>T</sub>                                          | 2.56510 | 0.39912      |
| sigE <sub>T</sub> <sup>miss</sup>                       | 2.81620 | 0.17902      |
| m <sub>II</sub>                                         | 2.87348 | 0.12174      |
| $\Delta \Phi(ec{E}_T^{miss},ec{ ho}_T^{closest})$       | 2.87644 | 0.11878      |
| $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$ | 2.88721 | 0.10801      |
| $\Delta \Phi(ec{E}_T^{miss},ec{p}_T^{ll\gamma})$        | 2.92392 | 0.07130      |
| E <sup>miss</sup>                                       | 2.93307 | 0.06215      |
| $\vec{P}_T^{balance}$                                   | 2.94389 | 0.05133      |

Table 2: Variable ranking

<ロト < 回 ト < 臣 ト < 臣 ト - 臣

### Counts comparison

This is a list showing how many times the algorithm chose to use one variable as discriminating variable during the training of the trees.

| num |
|-----|
| 360 |
| 364 |
| 434 |
| 531 |
| 868 |
| 232 |
| 747 |
| 134 |
| 187 |
|     |

Table 3: Variable ranking

| variable                                                | num |
|---------------------------------------------------------|-----|
| $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest})$    | 868 |
| $\Delta \Phi(ec{E}_T^{miss},ec{p}_T^{ll\gamma})$        | 747 |
| m <sub>ll</sub>                                         | 531 |
| sigE <sub>T</sub> <sup>miss</sup>                       | 434 |
| mT                                                      | 364 |
| $ec{ ho}_T^\gamma$                                      | 360 |
| $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$ | 232 |
| $\vec{p}_T^{balance}$                                   | 187 |
| E <sup>miss</sup>                                       | 134 |

Table 4: Variable ranking

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三臣

#### Figure 44: Variable ranking - all variables

|      | <br>                | <br>                |
|------|---------------------|---------------------|
| Rank | Variable            | Variable Importance |
|      |                     |                     |
| 1    | METsig              | 1.349e-01           |
| 2    | рТу                 | 1.332e-01           |
| 3    | dphi_MET_lly        | 1.277e-01           |
| 4    | mΤ                  | 1.273e-01           |
| 5    | dphi_MET_closest    | 1.227e-01           |
| 6    | pTbalance           | 1.139e-01           |
|      | mll                 | 1.065e-01           |
| 8    | MET                 | 8.021e-02           |
| 9    | dphi_MET_closestjet | 5.353e-02           |

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

#### Figure 45: Variable ranking - all variables

| Rank : | Variable            | Variable Importance |
|--------|---------------------|---------------------|
|        |                     |                     |
| 1 :    | mT                  | 1.414e-01           |
| 2 :    | METsig              | 1.301e-01           |
|        | pTbalance           | 1.171e-01           |
| 4 :    | dphi_MET_lly        | 1.143e-01           |
|        | dphi_MET_closest    | 1.131e-01           |
|        | рТу                 | 1.130e-01           |
|        | mll                 | 1.056e-01           |
| 8 :    | MET                 | 8.890e-02           |
|        | dphi_MET_closestjet | 7.656e-02           |
|        |                     |                     |

<ロト <回ト < 回ト < 回ト -

#### Figure 46: Variable ranking - all variables

| Rank | Variable            | Variable Importance |
|------|---------------------|---------------------|
|      |                     |                     |
| 1    | mT                  | 1.477e-01           |
| 2    | рТу                 | 1.346e-01           |
|      | METsig              | 1.345e-01           |
| 4    | dphi_MET_closest    | 1.125e-01           |
|      | pTbalance           | 1.087e-01           |
|      | dphi_MET_lly        | 1.035e-01           |
|      | mll                 | 9.560e-02           |
| 8    | MET                 | 9.116e-02           |
|      | dphi_MET_closestjet | 7.178e-02           |
|      |                     |                     |

#### Figure 47: Variable ranking - all variables

| Rank : Variable         | : Variable Importance |
|-------------------------|-----------------------|
|                         |                       |
| 1 : METsig              | : 1.376e-01           |
| 2 : mT                  | : 1.344e-01           |
| 3 : рТу                 | : 1.267e-01           |
| 4 : pTbalance           | : 1.261e-01           |
| 5 : dphi_MET_closest    | : 1.072e-01           |
| 6 : dphi_MET_lly        | : 1.053e-01           |
| 7 : mll                 | : 1.015e-01           |
| 8 : MET                 | : 8.384e-02           |
| 9 : dphi_MET_closestjet | : 7.743e-02           |
|                         |                       |

#### Figure 48: Variable ranking - all variables

| Rank | Variable            | Variable Importance |
|------|---------------------|---------------------|
|      |                     |                     |
|      | mT                  | 1.378e-01           |
| 2    | METsig              | 1.344e-01           |
|      | pTbalance           | 1.243e-01           |
| 4    | dphi_MET_closest    | 1.146e-01           |
|      | dphi_MET_lly        | 1.115e-01           |
|      | рТу                 | 1.096e-01           |
|      | mll                 | 1.007e-01           |
| 8    | dphi_MET_closestjet | 8.592e-02           |
|      | MET                 | 8.126e-02           |

- Some variables, such as  $\vec{E}_T^{miss}$  and  $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$ , appear at the bottom of the ranking, independently by the method used to do it.
- In the same way,  $m_T$  and  $\vec{E}_T^{miss}$  significance always appear in the first places.
- In the two first variable rankings, made deleting variables one a time and counting how many times each variable was used during the training,  $m_T$  and  $p_T^{\gamma}$  appear near in the ranking. These variables have a significant correlation in the background.

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>