A trail of Dark-Matter-free galaxies from a bullet-dwarf collision¹

Speaker: Giulia Maineri

December 6th, 2022

¹https://www.nature.com/articles/s41586-022-04665-6

DM-free galaxies from a bullet-dwarf collision

イロト イポト イヨト イヨト

- 1 Introduction about DF2 and DF4
- $\ensuremath{\textcircled{O}}$ Birth of the galaxies DF2 and DF4
- 3 A trail of DM-free objects
- Open questions
- **6** Conclusions

æ

2/19

(日) (四) (日) (日) (日)

But first...

Why?

< □ > < □ > < □ > < □ > < □ >

2

Why? self interaction cross-section of Dark Matter

< □ > < □ > < □ > < □ > < □ >

2

DF2 and DF4 are Ultra-Diffuse Galaxies (UDG) \in NGC 1052 group

DF2 galaxy²

²https://hubblesite.org/contents/media/images/2018/16/4139-Image.html \rightarrow (\equiv \rightarrow)

Unusual properties:

2

メロト メロト メヨト メヨト

Unusual properties:

• large sizes

2

5/19

イロト イヨト イヨト イヨト

Unusual properties:

- large sizes
- rich populations of over-luminous and large Globular Clusters (GCs)

 $\textit{GCLF}_{\textit{DF2}/\textit{DF4}} \sim 100 \left< \textit{GCLF} \right>$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1

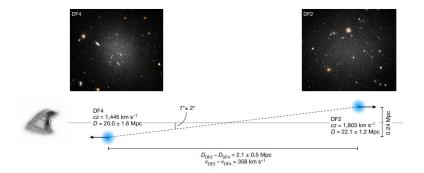
1

DF2 and DF4

Unusual properties:

- large sizes
- rich populations of over-luminous and large Globular Clusters (GCs)

$$GCLF_{DF2/DF4} \sim 100 \langle GCLF \rangle$$

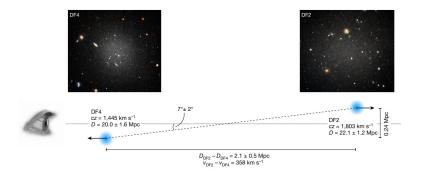

low velocity dispersions
 ⇒ little or no Dark Matter (DM)

$$M \propto \sigma_{v}^{k} \qquad k \simeq 3$$
$$M \ge \sum_{i} m_{i}$$
$$\implies \sigma_{v}^{k} \ge \sum_{i} m_{i}$$

イロト イポト イヨト イヨト

æ

Why a collisional formation

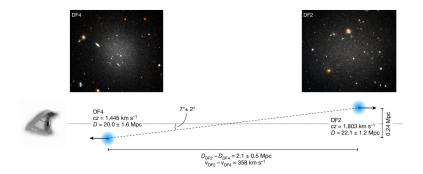


The **joint** collisional formation is suggested by:

Giu	lia -	Ma	iner	I.

Image: A math the second se

Why a collisional formation

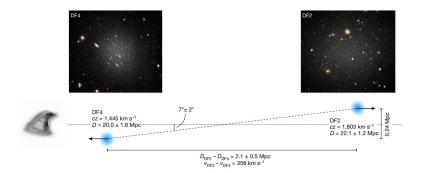


The **joint** collisional formation is suggested by:

• Many unusual properties in common are unlikely to be a coincidence

A B A B A B A

Why a collisional formation



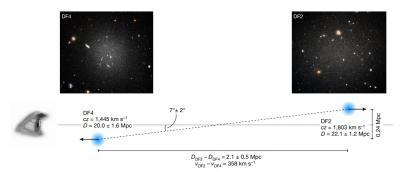
The **joint** collisional formation is suggested by:

- · Many unusual properties in common are unlikely to be a coincidence
- DF2 and DF4 close to each other at the time of their formation

• • • • • • • • • • • •

Why a collisional formation

The joint collisional formation is implied by


• their present-day radial velocities

$$v_{DF2} - v_{DF4} = 358 \text{ km/s} \sim 3\sigma_{NGC1052}$$

 \rightarrow consistent with their line-of-sight distances

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why a collisional formation

The joint collisional formation is implied by

• 3D locations

Along the line of sight:

$$D_{DF2} - D_{DF4} = (2.1 \pm 0.5) \text{ Mpc} \sim 5 R_{_{NGC1052}}$$

In the plane of the sky:

$$y_{DF2} - y_{DF4} = 0.24 \operatorname{Mpc}_{-}$$

> < 同 > < 三 >

7/19

★ Who?

Gas-rich dwarf galaxies, i.e a few billion stars

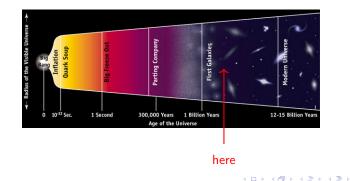
A dwarf galaxy ³

 $^{3} https://esahubble.org/wordbank/dwarf-galaxy/$

Giulia Maineri

DM-free galaxies from a bullet-dwarf collision

• • • • • • • • • • •


★ Who?

Gas-rich dwarf galaxies, i.e a few billion stars

付 When?

Around 8 billion years ago (at least 6 Gyr).

- inferred assuming a post-collision velocity $\langle v \rangle \sim 350 \, {\rm km/s}.$
- consistent with the age of the globular clusters of DF2

э

★ Who?

Gas-rich dwarf galaxies, i.e a few billion stars

Around 8 billion years ago (at least 6 Gyr).

- inferred assuming a post-collision velocity $\langle v \rangle \sim 350 \, \text{km/s}.$
- consistent with the age of the globular clusters of DF2

Ø Where?

Near the central galaxy NGC 1052

- \sim halfway between DF2 and DF4 in projection
- its deep potential well is conducive to high-speed interactions

< □ > < 同 > < 三 > < 三 >

★ Who?

Gas-rich dwarf galaxies, i.e a few billion stars

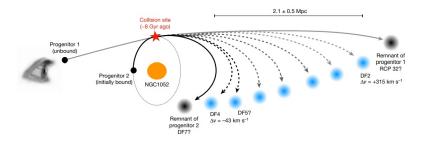
💆 When?

Around 8 billion years ago (at least 6 Gyr).

- inferred assuming a post-collision velocity $\langle {\rm v} \rangle \sim 350\,{\rm km/s}.$
- consistent with the age of the globular clusters of DF2

👸 Where?

Near the central galaxy NGC 1052


- \sim halfway between DF2 and DF4 in projection
- its deep potential well is conducive to high-speed interactions

Mow?

High-velocity collision $(\sim 300\,{\rm km/s})$

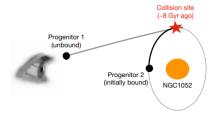
Section 3.1 Contemporary Section 3.1 Contempor

- progenitor 1, unbound
 DF2 took its property
- progenitor 2, on a bound orbit (satellite of NGC 1052)
 - \implies DF4 took its property

(日) (四) (日) (日) (日)

🎇 Who were the progenitors?

- progenitor 1, unbound
 DF2 took its property
- progenitor 2, on a bound orbit (satellite of NGC 1052)
 ⇒ DF4 took its property


It is consistent with tidal distortions?

The two galaxies have almost identical tidal distortions

 \rightarrow agrees with the galaxies being at the same distance from NGC 1052 when they were formed

9/19

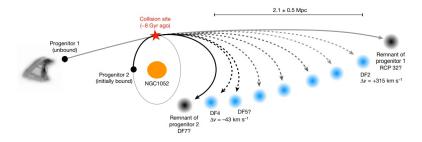
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

What happened?

• Progenitor 1 arrived in the vicinity of progenitor 2 with high-speed

イロト イポト イヨト イヨト

э



What happened?

- Progenitor 1 arrived in the vicinity of progenitor 2 with high-speed
- The gas was separated from the collisionless DM and pre-existing stars³

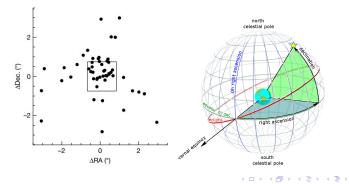
³https://apod.nasa.gov/apod/ap060824.html

• • • • • • • • • • • •

What happened?

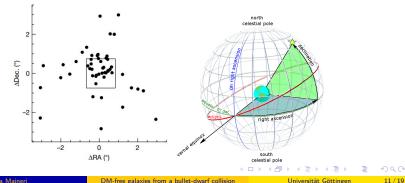
- Progenitor 1 arrived in the vicinity of progenitor 2 with high-speed
- The gas was separated from the collisionless DM and pre-existing stars
- New galaxies were formed together with massive clumps.

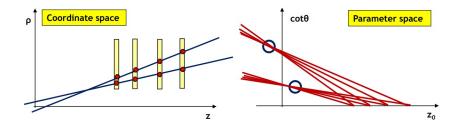
The spatial distribution of galaxies around DF2 and DF4 was studied in order to find:


• other DM-free objects possibly formed in the collisional process, due to the complex gas distribution during and after the event

• • • • • • • • • • •

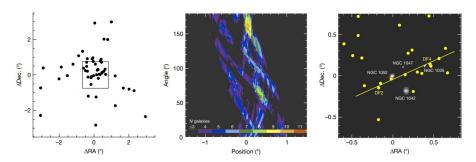
The spatial distribution of galaxies around DF2 and DF4 was studied in order to find:


- other DM-free objects possibly formed in the collisional process, due to the complex gas distribution during and after the event
- 2 DM-dominant objects, remnants of the two progenitors, predicted by the bullet dwarf event


11/19

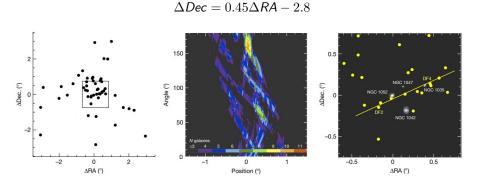
The spatial distribution of galaxies around DF2 and DF4 was studied in order to find:

- other DM-free objects possibly formed in the collisional process, due to the complex gas distribution during and after the event
- 2 DM-dominant objects, remnants of the two progenitors, predicted by the bullet dwarf event
- \implies Hough transform


\implies Hough transform

< □ > < 同 > < 回 > < 回 >

э


Peak with 11 galaxies in a line:

 $\Delta Dec = 0.45 \Delta RA - 2.8$

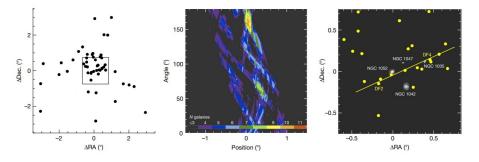
• • • • • • • • • •

Peak with 11 galaxies in a line:

probability that the peak arose by chance: 3%

Peak with 11 galaxies in a line:

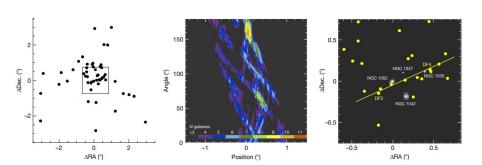
150 0.5 ADec. (°) ADec. (°) Angle (°) 0 NGC 104 50 -0.5 -2 2 -0.5 0.5 -1 1 0 ΔRA (°) Position (°) ΔRA (°)


 $\Delta Dec = 0.45 \Delta RA - 2.8$

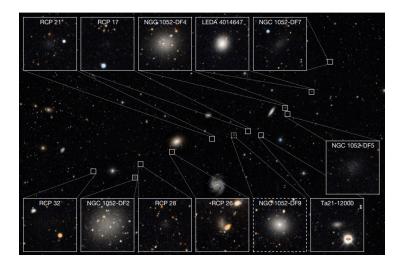
probability that the peak arose by chance: 3% probability that the peak arose by chance and DF2, DF4 are part of it: 0.6%.

A D > A B > A B

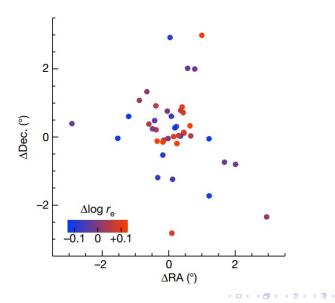
Peak with 11 galaxies in a line:


 $\Delta Dec = 0.45 \Delta RA - 2.8$

probability that the peak arose by chance: 3% probability that the peak arose by chance and DF2, DF4 are part of it: 0.6%. number of galaxies that could be a chance projection: 2 ± 2


A I > A I > A

Peak with 11 galaxies in a line:


 $\Delta Dec = 0.45 \Delta RA - 2.8$

probability that the peak arose by chance: 3% probability that the peak arose by chance and DF2, DF4 are part of it: 0.6%. number of galaxies that could be a chance projection: $2 \pm 2 \implies$ 7–11 galaxies in the structure

< □ > < □ > < □ > < □ > < □ >

э

2

- Ages of globular clusters of DF4
 - \implies expected to be identical to those of DF2

э

16/19

< □ > < □ > < □ > < □ > < □ >

- Ages of globular clusters of DF4
 ⇒ expected to be identical to those of DF2
- Kinematic of the other galaxies in the trail
 - \implies expected to be consistent with a baryon-only model

16/19

イロト イポト イヨト イヨト

- Ages of globular clusters of DF4
 - \implies expected to be identical to those of DF2
- Kinematic of the other galaxies in the trail
 ⇒ expected to be consistent with a baryon-only model
- Line-of-sight distances of the other galaxies

16/19

- Ages of globular clusters of DF4
 - \implies expected to be identical to those of DF2
- Kinematic of the other galaxies in the trail
 ⇒ expected to be consistent with a baryon-only model
- Line-of-sight distances of the other galaxies
- Number of interlopers and/or missing galaxies
 - \implies DF1 could be possibly also a part of the trail
 - \implies LEDA 4014647 is a candidate interloper

• • • • • • • • • • • • • •

- Ages of globular clusters of DF4
 - \implies expected to be identical to those of DF2
- Kinematic of the other galaxies in the trail
 - \implies expected to be consistent with a baryon-only model
- Line-of-sight distances of the other galaxies
- Number of interlopers and/or missing galaxies
 - \implies DF1 could be possibly also a part of the trail
 - \implies LEDA 4014647 is a candidate interloper
- Deeper comprehension of bullet-dwarf collisional events to get a constraint to the self-interaction cross section of DM
 - \implies need of other similar events

Conclusions

• The galaxies DF2 and DF4 have been presented, focusing on their unusual shared properties which suggest a **link** between them and a **lack of DM**

イロト イポト イヨト イヨト

- The galaxies DF2 and DF4 have been presented, focusing on their unusual shared properties which suggest a **link** between them and a **lack of DM**
- The hypothesis of a joint formation of the two UDG galaxies DF2 and DF4 in a **bullet-dwarf collision** has been proposed

- The galaxies DF2 and DF4 have been presented, focusing on their unusual shared properties which suggest a **link** between them and a **lack of DM**
- The hypothesis of a joint formation of the two UDG galaxies DF2 and DF4 in a **bullet-dwarf collision** has been proposed
- Time, location, dynamic and other **details** of the event have been inferred

- The galaxies DF2 and DF4 have been presented, focusing on their unusual shared properties which suggest a **link** between them and a **lack of DM**
- The hypothesis of a joint formation of the two UDG galaxies DF2 and DF4 in a **bullet-dwarf collision** has been proposed
- Time, location, dynamic and other details of the event have been inferred
- A study of the spatial distribution of galaxies around DF2 and DF4 led to the discovery of **other DM-free objects** and the **two progenitors** of the galaxies

- The galaxies DF2 and DF4 have been presented, focusing on their unusual shared properties which suggest a **link** between them and a **lack of DM**
- The hypothesis of a joint formation of the two UDG galaxies DF2 and DF4 in a **bullet-dwarf collision** has been proposed
- Time, location, dynamic and other **details** of the event have been inferred
- A study of the spatial distribution of galaxies around DF2 and DF4 led to the discovery of **other DM-free objects** and the **two progenitors** of the galaxies

A trail of DM-free galaxies with joint collisional formation roughly more than $2\,\text{Mpc}$ apart and angled $7^\circ\pm2^\circ$ from the line of sight has been identified

イロト イポト イヨト イヨト

Your questions

< □ > < □ > < □ > < □ > < □ >

2

References

- Pieter van Dokkum et al. "A trail of dark-matter-free galaxies from a bullet-dwarf collision". In: *Nature* 605.7910 (2022), pp. 435–439.
- [2] Yotam Cohen et al. "The Dragonfly Nearby Galaxies Survey. V. HST/ACS Observations of 23 Low Surface Brightness Objects in the Fields of NGC 1052, NGC 1084, M96, and NGC 4258". In: *The Astrophysical Journal* 868.2 (2018), p. 96.
- [3] Zili Shen, Pieter van Dokkum, and Shany Danieli. "A complex luminosity function for the anomalous globular clusters in NGC 1052-DF2 and NGC 1052-DF4". In: *The Astrophysical Journal* 909.2 (2021), p. 179.