Stackplots

Giulia Maineri

Università degli studi di Milano

March 2022

クへで 1/35

E

イロト イヨト イヨト イヨト

Selections: mll-all, nobjets, MET-A, mT-all, metsig-all

2 Selections: mll-peak, nobjets, MET-A, mT-all, metsig-all

- mll-all: no selections in leptons invariant mass
- nobjets: b-veto, selection of events without b-jets
- MET-A: selection of A region, at high MET and high $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$
- mT-all: no selections in transverse mass
- metsig-all: no selections in MET significance

Missing transverse energy, MET \vec{E}_T^{miss}

$$\vec{E}_{T}^{miss} = -\left[\sum_{e} \vec{p}_{T}^{(e)} + \sum_{\mu} \vec{p}_{T}^{(\mu)} + \sum_{\gamma} \vec{p}_{T}^{(\gamma)} + \sum_{\tau} \vec{p}_{T}^{(\tau)} + \sum_{jet} \vec{p}_{T}^{(jet)} + \sum_{x} \vec{p}_{T}^{(x)}\right]$$

Figure 1: ee γ channel

Figure 2: $\mu\mu\gamma$ channel

Notes

- There are less $W\gamma$ events in $\mu\mu\gamma$ channel
- Fake MET decrease faster than signal at higher values of MET
- $\bullet\,$ There is the 60 ${\rm GeV}$ cut in MET that defines SR

MET significance $\sigma_{E_T^{miss}}$

$$\textit{sig} = \frac{E_{T}^{\textit{miss}}}{\sigma_{E_{T}^{\textit{miss}}}}$$

Figure 3: $ee\gamma$ channel

Figure 4: $\mu\mu\gamma$ channel

・ロット・西・・田・・日・・日・

 $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest})$

Figure 5: $ee\gamma$ channel

Figure 6: $\mu\mu\gamma$ channel

 $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet})$

Figure 7: $ee\gamma$ channel

Figure 8: $\mu\mu\gamma$ channel

 $\Delta \Phi(E_T^{miss}, \sum \vec{p}_T^{jets})$

Figure 9: $ee\gamma$ channel

Figure 10: $\mu\mu\gamma$ channel

 $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma II})$

Figure 11: $ee\gamma$ channel

Figure 12: $\mu\mu\gamma$ channel

$\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$ (selection MET-SR)

Figure 13: $ee\gamma$ channel

Figure 14: $\mu\mu\gamma$ channel

$\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest}), \ \Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closestjet}),$ $\Delta \Phi(\vec{E}_T^{miss}, \sum \vec{p}_T^{jets}), \ \Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$

Notes

- \bullet Angle between MET and the closest object is often smaller than $\pi/2$
- When there are problems in finding the closest jet, angle is set to impossible value, i. e. 4
- Angle between MET and the closest jet momentum and angle between MET and the sum of all jets momenta seem not to help in discriminating signal and background
- There is the 2.4 cut in $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma II})$ that defines SR
- With a MET-SR selection, i. e. no cut at 2.4, the faster decrease of $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$ is observed, contrasting with background's flat distribution

▲ロト ▲園 ト ▲ ヨト ▲ ヨト 三 ヨー つんで

 η_{γ}

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

Figure 15: $ee\gamma$ channel

Figure 16: $\mu\mu\gamma$ channel

Notes

- A lack of values is observed in the interval $\eta_{\gamma} = [1.37, 1.52]$ due to a crack region caused by poor performance of detectors (calorimeters)
- The presence of value in the $ee\gamma$ channel can be related to binning effect and/or to differences between η and η_2 , as crack region is defined on the latter.

$$m_T = \sqrt{2 p_T^\gamma} E_T^{miss} (1 - cos(\Phi^\gamma - \Phi^{E_T^{miss}}))$$

Figure 17: ee γ channel

Figure 18: $\mu\mu\gamma$ channel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Invariant mass m_{II}

$$m_{II} = \sqrt{(E_{I1} + E_{I2})^2 - (\vec{p}_{I1} + \vec{p}_{I2})^2}$$
$$m_{II} = \sqrt{2p_T^{I1}p_T^{I2}[\cosh(\eta^{I1} - \eta^{I2}) - \cos(\Phi^{I1} - \Phi^{I2})]}$$

Figure 19: $ee\gamma$ channel

Figure 20: $\mu\mu\gamma$ channel

$$m_{II\gamma} = \sqrt{(E_{I1} + E_{I2} + E_{\gamma})^2 - (\vec{p}_{I1} + \vec{p}_{I2} + \vec{p}_{\gamma})^2}$$

Figure 22: $\mu\mu\gamma$ channel

Notes

- $\bullet\,$ Transverse mass seems to be discriminating as there is a peak in signal around 125 ${\rm GeV},\,$ Higgs boson mass, which is not present in background
- A peak is observed in m_{II} around 90 GeV, which is boson Z mass. This peak is much thinner for signal. Side-bands for background are larger due to the overlap of two processes with the same final state but different mediator: virtual Z boson and virtual photon. A virtual photon can couple with both quarks and leptons as they are charged objects, but not with Higgs boson H which can only couple with massive objects. Invariant mass m_{II} seems to be a good discriminator.

• A 100 GeV cut in $m_{II\gamma}$ has been done in order to avoid Z boson three-bodies decays which produce two leptons and a photon such as signal, but with a lower $m_{II\gamma}$ as it should be around 90 GeV for three-bodies decays. In our signal $m_{II\gamma}$ should be higher as m_{II} is around 90 GeV.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Transverse momentum balance

Figure 23: $ee\gamma$ channel

Figure 24: $\mu\mu\gamma$ channel

Leptons transverse momentum \vec{p}_{T}^{\parallel}

$$\vec{p}_T'' = \vec{p}_T'^1 + \vec{p}_T'^2$$

Figure 26: $\mu\mu\gamma$ channel

▲ロト ▲□ト ▲ヨト ▲ヨト ニヨー のへで

Figure 27: ee γ channel

Figure 28: $\mu\mu\gamma$ channel

イロト イポト イヨト イヨト

3

 $\vec{p}_T^{balance}, \vec{\vec{p}}_T^{ll}, \vec{\vec{p}}_T^{\gamma}$

Notes

- A peak is observed in $p_T^{balance}$ around 1 more evident for signal.
- There is a cut at 25 ${\rm GeV}$ in photon momentum $\vec{p}_{\mathcal{T}}^{\gamma}$ which defines SR
- p_T^{γ} should have a peak around $\frac{m_H}{2}$ but it is not observed due to Z-momentum contribute

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

- $\bullet\,$ mll-peak: selection of interval $[76\,{\rm GeV}, 116\,{\rm GeV}]$ in leptons invariant mass, around Z boson mass
- nobjets: b-veto, selection of events without b-jets
- MET-A: selection of A region, at high MET and high $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$

<ロト < 回 ト < 三 ト < 三 ト - 三

- mT-all: no selections in transverse mass
- metsig-all: no selections in MET significance

$$\vec{E}_{T}^{miss} = -\left[\sum_{e} \vec{p}_{T}^{(e)} + \sum_{\mu} \vec{p}_{T}^{(\mu)} + \sum_{\gamma} \vec{p}_{T}^{(\gamma)} + \sum_{\tau} \vec{p}_{T}^{(\tau)} + \sum_{jet} \vec{p}_{T}^{(jet)} + \sum_{x} \vec{p}_{T}^{(x)}\right]$$

Figure 29: $ee\gamma$ channel

Figure 30: $\mu\mu\gamma$ channel

MET significance $\sigma_{E_{T}^{miss}}$

$$sig = rac{E_T^{miss}}{\sigma_{E_T^{miss}}}$$

Figure 31: $ee\gamma$ channel

Figure 32: $\mu\mu\gamma$ channel

 $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{closest})$

Figure 33: $ee\gamma$ channel

Figure 34: $\mu\mu\gamma$ channel

◆□▶ ◆□▶ ◆豆▶ ◆豆≯

3

Invariant mass m_{II}

$$m_{II} = \sqrt{(E_{I1} + E_{I2})^2 - (\vec{p}_{I1} + \vec{p}_{I2})^2}$$
$$m_{II} = \sqrt{2p_T^{I1}p_T^{I2}[\cosh\left(\eta^{I1} - \eta^{I2}\right) - \cos(\Phi^{I1} - \Phi^{I2})]}$$

Figure 35: $ee\gamma$ channel

Figure 36: $\mu\mu\gamma$ channel

- $\bullet\,$ mll-all, mll-peak [76 ${\rm GeV}, 116\,{\rm GeV}]$, mll-side $\notin\,$ [76 ${\rm GeV}, 116\,{\rm GeV}]$
- nobjets: b-veto, selection of events without b-jets
- MET-A: selection of A region, at high MET and high $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$
- mT-all: no selections in transverse mass
- metsig-all: no selections in MET significance

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Figure 37: MET for different m_{II} cuts

Blu and pink curves represents signal MET for m_{II} -all, m_{II} -peak and m_{II} -side.

Yellow curve is background's MET for m_{II} -all; light-blu curve for m_{II} -peak and grey curve for m_{II} -side.

Figure 38: Signal's MET

Figure 39: Background's MET

Figure 40: $p_T^{balance}$ for signal (red and yellow) and background (green and pink) in $\mu\mu\gamma$ and ee γ channels

$\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$

Figure 41: $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma ll})$ for signal (red and green) and background (yellow and grey) in $\mu\mu\gamma$ and ee γ channels

MET in A,B,C,D regions

Figure 42: Signal's MET in ABCD regions

Figure 43: Background's MET in ABCD regions

シックシード (中下・・中下・・日・)