Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s} = 13 \,\text{TeV}$ collisions with the ATLAS detector¹

Speaker: Giulia Maineri

June 13th, 2023

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE

¹https://arxiv.org/pdf/2303.15340.pdf

Giulia Maineri

Dilepton $t\bar{t}$ cross-section

Image: A matrix of the second seco

ELE NOR

1 Introduction

2 Detector

- **3** Signal and Event Reconstruction
- 4 Background
- Data and simulations
- 6 Analysis

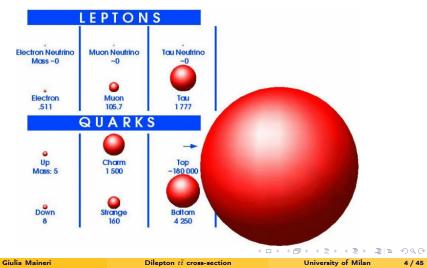
Results

Giu		

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

Introduction

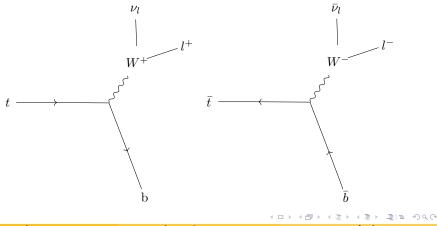
Dilepton $t\bar{t}$ cross-section


University of Milan 3 / 45

シック・当主 (ヨト (ヨト (日)) (つ)

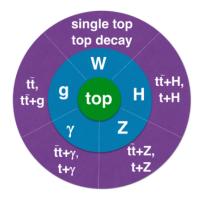
The top quark

Why top quark?


• heaviest known elementary particle $(m_t \simeq 173 \,\text{GeV}) \rightarrow \text{large coupling to}$ Higgs boson $(y_t = \frac{m_t}{v} \simeq 0.7)$

The top quark

Why top quark?


- heaviest known elementary particle ($m_t \simeq 173 \,\text{GeV}$) \rightarrow large coupling to Higgs boson ($y_t = \frac{m_t}{v} \simeq 0.7$)
- short lifetime ($\tau \simeq 10^{-25}$ s) \rightarrow decay before hadronizing ($\Lambda_{QCD} \simeq 10^{-24}$ s)

The top quark

Why top quark?

- heaviest known elementary particle $(m_t \simeq 173 \,\text{GeV}) \rightarrow$ large coupling to Higgs boson $(y_t = \frac{m_t}{v} \simeq 0.7)$
- short lifetime ($\tau \simeq 10^{-25}$ s) \rightarrow decay before hadronizing ($\Lambda_{QCD} \simeq 10^{-24}$ s)
- couples to all bosons

-

Image: A matrix and a matrix

DACE = ACC

Why top quark?

- heaviest known elementary particle $(m_t \simeq 173 \,\text{GeV}) \rightarrow$ large coupling to Higgs boson $(y_t = \frac{m_t}{v} \simeq 0.7)$
- short lifetime ($\tau \simeq 10^{-25}$ s) \rightarrow decay before hadronizing ($\Lambda_{QCD} \simeq 10^{-24}$ s)
- couples to all bosons

Why top-antitop pair production?

 \rightarrow test QCD model parameters: $\alpha_s, m_t, PDFs...$

Giu		

Dilepton $t\bar{t}$ cross-section

University of Milan 5 / 45

ATLAS

= multi-purpose and multi-layer detector

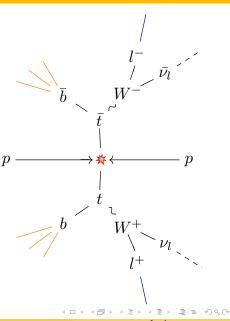
- Inner Detectors (ID)
- Calorimeters (ECal + HCal)
- Muon Spectrometer (MS)

6 / 45

Signal and Event Reconstruction

Giulia Maineri

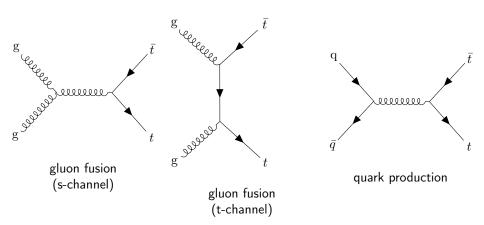
Dilepton $t\bar{t}$ cross-section


University of Milan 7/45

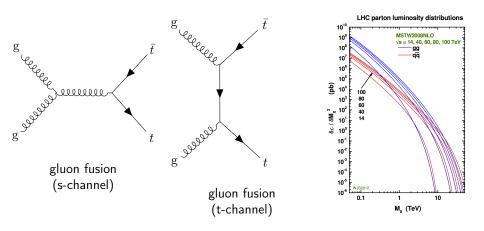
シック・目前 (曲) (目) (目) (日)

$$t\overline{t} \rightarrow W^+(\rightarrow l^+
u_l)bW^-(\rightarrow l^-\overline{\nu}_l)\overline{b}$$

where $l^+ = e^+, l^- = \mu^-$ or
 $l^+ = \mu^+, l^- = e^-$


Final state

- 1 electron e^{\mp}
- 1 muon μ^{\pm}
- 1-2 b-jets
- \vec{E}_T^{miss}


Signal

Giulia Maineri

Dilepton $t\bar{t}$ cross-section	Un	iversity (of Milar	1	9/	45

Signal

Dilepton $t\bar{t}$ cross-section		L L	Jnive	ersity	of	Mila	n	9	/ 45
	· ·			= "		= -		•)	de.

Giulia Maineri

Event reconstruction: electron

- 1 electron e^{\mp}
 - matching energy cluster in ECal + track in ID
 - tight selection criteria
 - isolation requirement, with efficiency 90% computed on a $Z
 ightarrow e^+e^-$ sample
 - compatibility with the primary vertex requirement, i.e. cut on the impact parameter significance $|d_0|/\sigma_{d_0} < 5$

PV

Image: 0

三日 のへの

Event reconstruction: muon

1 muon μ^{\pm}

- matching track in ID + track in MS
- medium selection criteria
- isolation requirement with efficiency of \in [85%, 98%] depending on the transverse momentum $p_T^\mu \in$ [25, 100]GeV
- compatibility with the primary vertex requirement, i.e. cut on the impact parameter significance $|d_0|/\sigma_{d_0} < 3$

PV

三日 わへで

1-2 b-jets

- anti- k_T algorithm with R = 0.4
- $p_T > 25 \text{ GeV}$
- $|\eta| < 2.5$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

Event reconstruction: jets

1-2 b-jets

- anti- k_T algorithm with R = 0.4
- *p*_T > 25 GeV
- $|\eta| < 2.5$
- requirement to be compatible with the primary vertex, i.e. cut on JVT, with efficiency \in [87%, 95%] depending on $p_T \in$ [25, 60]GeV

$$JVT = rac{\sum_{j \in hard \; scattering} p_T^j}{\sum_j p_T^j}$$

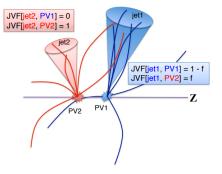
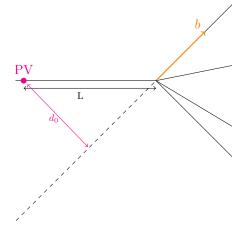



Image: A math a math

EL OQO

1-2 b-jets

- anti- k_T algorithm with R = 0.4
- $p_T > 25 \text{ GeV}$
- $|\eta| < 2.5$
- requirement to be compatible with the primary vertex, i.e. cut on JVT, with efficiency \in [87%, 95%] depending on $p_T \in$ [25, 60]GeV
- b-tagging, with methods based on lifetimes, masses and decay topologies

To avoid double counting, the following objects are discarded:

• any e-candidate sharing a track with a μ -candidate

To avoid double counting, the following objects are discarded:

- any *e*-candidate sharing a track with a μ-candidate
- any jet within $\Delta R = 0.2$ of an *e*-candidate

EL OQO

< D > < A >

To avoid double counting, the following objects are discarded:

- any *e*-candidate sharing a track with a μ-candidate
- any jet within $\Delta R = 0.2$ of an *e*-candidate
- e-candidates within $0.2 < \Delta R < 0.4$ around any remaining jet

EL OQO

ie

To avoid double counting, the following objects are discarded:

- any e-candidate sharing a track with a μ-candidate
- any jet within $\Delta R = 0.2$ of an *e*-candidate
- *e*-candidates within $0.2 < \Delta R < 0.4$ around any remaining jet
- jets that have fewer than three tracks and are within $\Delta R = 0.2$ of a μ -candidate

== nac

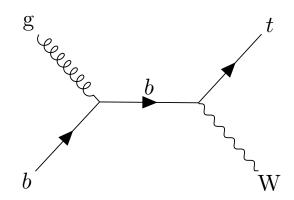
< < >> < <</>

To avoid double counting, the following objects are discarded:

- any *e*-candidate sharing a track with a μ-candidate
- any jet within $\Delta R = 0.2$ of an *e*-candidate
- e-candidates within 0.2 < ΔR < 0.4 around any remaining jet
- jets that have fewer than three tracks and are within $\Delta R = 0.2$ of a μ -candidate
- μ -candidates within $\Delta R = 0.4$ around any remaining jet

EL OQO

Background


Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan 14 / 45

(日) (日) (日) (日) (日) (日)

• Wt

- Wt
- misidentified leptons, including:
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge

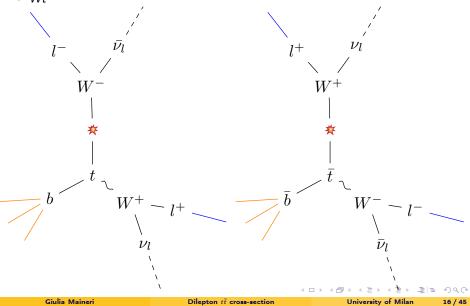
- Wt
- misidentified leptons, including:
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge
- VV, where $V \in \{W, Z\}$

- Wt
- misidentified leptons, including:
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge
- VV, where $V \in \{W, Z\}$
- Z+jets

• Wt

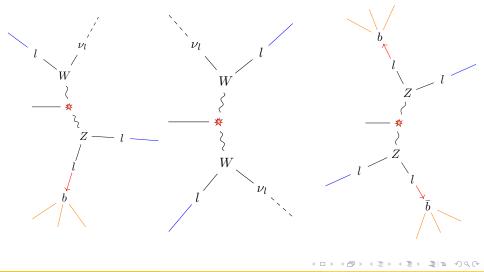
- misidentified leptons, including:
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge
- VV, where $V \in \{W, Z\}$
- Z+jets
- $t\bar{t}V$, where $V \in \{W, Z\}$

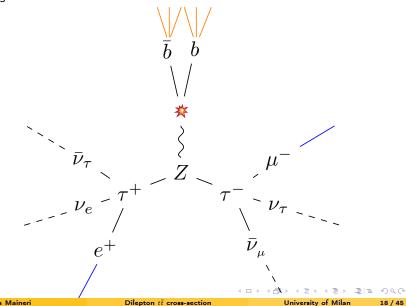
• Wt


- misidentified leptons, including:
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge
- VV, where $V \in \{W, Z\}$
- Z+jets
- $t\overline{t}V$, where $V \in \{W, Z\}$
- tŦH

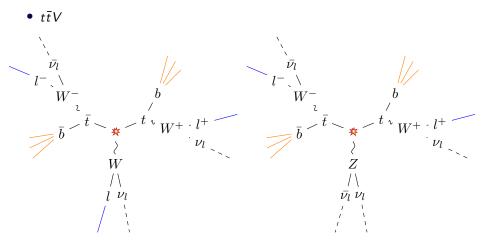
• Wt reducible

- misidentified leptons, including: reducible
 - electrons from the conversion of a photon radiated from a prompt electron
 - electrons from heavy flavour hadrons decays
 - muons from heavy flavour hadrons decays
 - leptons with wrongly reconstructed charge
- *VV*, where $V \in \{W, Z\}$ reducible
- Z+jets irreducible
- $t\bar{t}Z$ irreducible and $t\bar{t}W$ reducible
- *ttH* reducible


Background: Wt


Background: VV

• *VV*, where $V \in \{W, Z\}$


Background: Z+jets

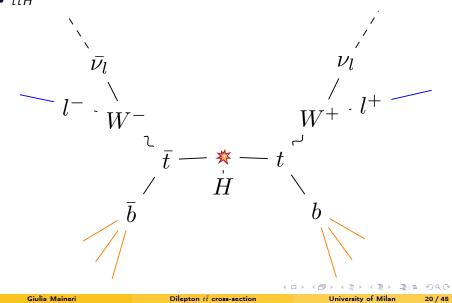
• Z+jets

Giulia Maineri

Background: $t\bar{t}V$

~·				
Giu	la	Ma	ine	rı –

Dilepton $t\bar{t}$ cross-section


э University of Milan 19 / 45

三日 のへの

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background: *tTH*

• tīH

• Wt: simulation

• misidentified leptons

- *e* from the conversion of a γ radiated from a prompt-*e* simulation
- *e* from heavy flavour hadrons decays simulation+data-driven
- μ from heavy flavour hadrons decays simulation+data-driven
- leptons with wrongly reconstructed charge simulation+data-driven
- *VV*, where $V \in \{W, Z\}$: simulation
- Z+jets: simulation + data-driven
- $t\bar{t}V$, where $V \in \{W, Z\}$: simulation
- *ttH* : simulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

 $\underline{\text{misidentified leptons: non-prompt leptons from hadron decays}} \rightarrow$ from the leptons in data that fail the impact parameter requirement

$$N^{SR}_{bkg} = rac{N^{CR}_{data}}{N^{CR}_{MC}} N^{SR}_{MC}$$

Giulia Maineri

Dilepton $t\bar{t}$ cross-section

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

Background estimation: data-driven techniques

 $\frac{\rm misidentified \ leptons: \ wrongly \ reconstructed \ charge}{\rightarrow \ \rm from \ the \ events \ in \ data \ with \ same-sign \ e\mu}$

 $\underline{\text{misidentified leptons: non-prompt leptons from hadron decays}} \rightarrow$ from the leptons in data that fail the impact parameter requirement

$$N_{bkg}^{SR} = rac{N_{data}^{CR}}{N_{MC}^{CR}} N_{MC}^{SR}$$

 $Z \rightarrow \tau \tau + \text{jets}$

 \rightarrow from samples of $Z \rightarrow \mu^+\mu^-$ + jets (CR1) and $Z \rightarrow e^+e^-$ +jets (CR2) \rightarrow average to find the scaling factor $K_{II+jets}$

$$K_{II+jets} = \frac{1}{2} \left(\frac{N_{data}^{CR1}}{N_{MC}^{CR1}} + \frac{N_{data}^{CR2}}{N_{MC}^{CR2}} \right)$$
$$N_{Z \to \tau\tau+jets}^{SR} = K_{II+jets} N_{MC}^{SR}$$

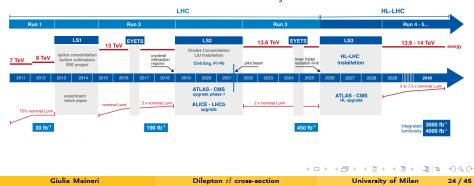
Giulia Maineri

Dilepton $t\bar{t}$ cross-section

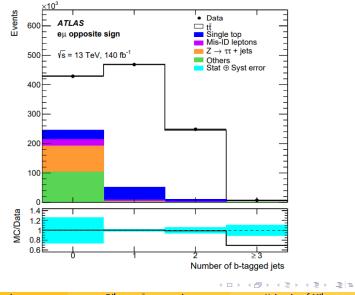
Data and simulations

uli			

Dilepton $t\bar{t}$ cross-section


University of Milan 23 / 45

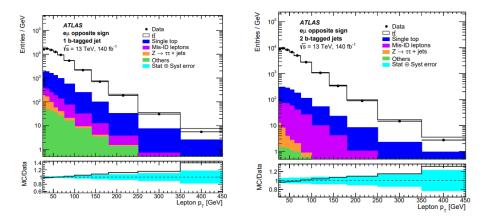
Data


DAQ period: 2015-2018 (Run 2) Center-of-mass energy: $\sqrt{s} = 13 \text{ TeV}$ Integrated luminosity: $\mathcal{L} = 140 \text{ fb}^{-1}$

Simulations

GEANT4: detector behaviour PYTHIA 8.186: pile-up EVTGEN1.6.0: charm and bottom showers POWHEG BOX: $t\bar{t}$ at NLO + many others...

Data distribution: number of b-jets



Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan 25 / 45

Data distribution: lepton transverse momentum (OS events)

Dilepton $t\bar{t}$ cross-section

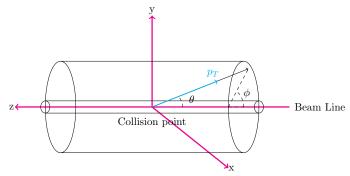
Giulia Maineri

Analysis

	/lainer	

Dilepton $t\bar{t}$ cross-section

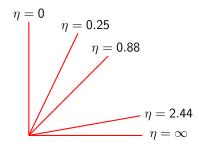
University of Milan 27 / 45


シック・目前 (曲) (目) (目) (日)

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

Giulia

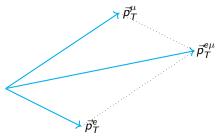
(Double) Differential cross-section distributions of kinematic variables:


• single-lepton transverse momentum, $p_T^l, l \in \{e, \mu\}$

Maineri	Dilepton $t\bar{t}$ cross-section	Un	iversity o	of Milan	i.	28 / 45
	4	< ⊡ >	< ≣ >	< ≣ >	관계	500

- single-lepton transverse momentum, $p_{T}^{l}, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta^{I}|, I \in \{e, \mu\}$

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$


Giulia Maineri	Dilepton $t\bar{t}$ cross-section	University of Milan	28 / 45
	4	· · · · · · · · · · · · · · · · · · ·	500

- single-lepton transverse momentum, $p_T^l, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta^{\prime}|, l \in \{e, \mu\}$
- eµ-system invariant mass m^{eµ}

$$m^{e\mu} = \sqrt{(E^e + E^{\mu})^2 - (\vec{p^e} + \vec{p^{\mu}})^2} \sim \sqrt{2p_T^e p_T^{\mu}} \sqrt{(\cosh(\Delta \eta^{e\mu}) - \cos(\Delta \Phi^{e\mu}))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

- single-lepton transverse momentum, $p_T^l, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta^{I}|, I \in \{e, \mu\}$
- eµ-system invariant mass m^{eµ}
- $e\mu$ -system transverse momentum $p_T^{e\mu}$

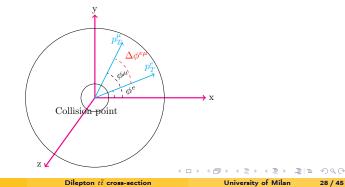
 $p_T^{e\mu} \sim \sqrt{2p_T^e p_T^\mu cos(\Delta \Phi^{e\mu})}$

ELE NOR

- single-lepton transverse momentum, $p_{T}^{l}, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta^{I}|, I \in \{e, \mu\}$
- eµ-system invariant mass m^{eµ}
- $e\mu$ -system transverse momentum $p_T^{e\mu}$
- *e*μ-system rapidity Y^{eμ}

$$Y = \frac{1}{2} \ln \left(\frac{E^{e\mu} + p_{||}^{e\mu}}{E^{e\mu} - p_{||}^{e\mu}} \right)$$
$$\beta \to 1 \quad Y \sim \eta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ


Differential cross-sections

(Double) Differential cross-section distributions of kinematic variables:

- single-lepton transverse momentum, $p_{T}^{l}, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta'|, l \in \{e, \mu\}$
- *eµ*-system invariant mass *m^{eµ}*
- $e\mu$ -system transverse momentum $p_T^{e\mu}$
- *eµ*-system rapidity *Y*^{*eµ*}

Giulia Maineri

- azimuthal angular separation of leptons $|\Delta \phi^{e\mu}|$

- single-lepton transverse momentum, $p_T^l, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta'|, l \in \{e, \mu\}$
- *eµ*-system invariant mass *m*^{*eµ*}
- $e\mu$ -system transverse momentum $p_T^{e\mu}$
- $e\mu$ -system rapidity $Y^{e\mu}$
- azimuthal angular separation of leptons $|\Delta \phi^{e\mu}|$
- sum of lepton energies $E^e + E^{\mu}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

- single-lepton transverse momentum, $p_T^l, l \in \{e, \mu\}$
- single-lepton pseudorapidity $|\eta^{I}|, I \in \{e, \mu\}$
- $e\mu$ -system invariant mass $m^{e\mu}$
- $e\mu$ -system transverse momentum $p_T^{e\mu}$
- $e\mu$ -system rapidity $Y^{e\mu}$
- azimuthal angular separation of leptons $|\Delta \phi^{e\mu}|$
- sum of lepton energies $E^e + E^{\mu}$
- scalar sum of lepton transverse momenta $p_T^e + p_T^\mu$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

Differential cross-sections: analysis

$$\begin{split} N_1^i &= L\sigma_{t\bar{t}}^i G_{e\mu}^i 2\epsilon_b^i (1 - \epsilon_b^i C_b^i) + N_{1,bkg}^i \\ N_2^i &= L\sigma_{t\bar{t}}^i G_{e\mu}^i (\epsilon_b^i)^2 C_b^i + N_{2,bkg}^i \end{split}$$

- $N_{1,2}^i$: numbers of selected data events with 1,2 b-tagged jets in the i-th bin
- $N_{1,2}^i$: numbers of predicted background events with 1,2 b-tagged jets in the i-th bin
- L: integrated luminosity
- $\sigma_{t\bar{t}}^i$ cross-section of $t\bar{t}$ production resulting in OS $e\mu$ in the fiducial region in the i-th bin
- $G_{e\mu}^i$: reconstruction efficiency

$$G_{e\mu}^{i}=rac{N_{MC,sel}^{i}}{N_{MC,gen}^{i}}$$

- *ϵⁱ_b*: combined probability for a b-jet from a t-decay to be reconstructed as a
 jet, to fall within the detector and selection acceptance and be tagged as b-jet
- Cⁱ_b: b-tagging correlation coefficient that corrects the probability of tagging the second jet after having tagged the first one

Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan

29 / 45

$$\begin{split} N_1^i &= L\sigma_{t\bar{t}}^i G_{e\mu}^i 2\epsilon_b^i (1 - \epsilon_b^i C_b^i) + N_{1,bkg}^i \\ N_2^i &= L\sigma_{t\bar{t}}^i G_{e\mu}^i (\epsilon_b^i)^2 C_b^i + N_{2,bkg}^i \end{split}$$

 \rightarrow unknown variables $\epsilon^i_b,~\sigma^i_{t\bar{t}}$ determined with a $-\ln[\mathcal{L}]$ fit

Dilepton $t\bar{t}$ cross-section

Differential cross-sections: analysis

$$\mathcal{L} = e^{-\left(L\sigma_{t\bar{t}}^{i}G_{e\mu}^{i}2\epsilon_{b}^{i}(1-\epsilon_{b}^{i}C_{b}^{i})+N_{\mathbf{1},bkg}^{i}\right)}\frac{\left(L\sigma_{t\bar{t}}^{i}G_{e\mu}^{i}2\epsilon_{b}^{i}(1-\epsilon_{b}^{i}C_{b}^{i})+N_{\mathbf{1},bkg}^{i}\right)^{N_{\mathbf{1}}^{i}}}{N_{\mathbf{1}}^{i}!}$$

$$-\ln[\mathcal{L}] = \left(L\sigma_{t\bar{t}}^{i}G_{e\mu}^{i}2\epsilon_{b}^{i}(1-\epsilon_{b}^{i}C_{b}^{i})+N_{1,bkg}^{i}\right)-(N_{1}^{i})\ln\left[L\sigma_{t\bar{t}}^{i}G_{e\mu}^{i}2\epsilon_{b}^{i}(1-\epsilon_{b}^{i}C_{b}^{i})+N_{1,bkg}^{i}\right]$$
$$-\ln\left[\pi_{G_{e\mu}^{i}}\right]-\ln\left[\pi_{C_{b}^{i}}\right]-\ln\left[\pi_{L}\right]$$

- parameters of interest: ϵ^i_b , $\sigma^i_{t\bar{t}}$
- observables: Nⁱ₁, Nⁱ_{1,bkg}
- nuisance parameters: G^i_μ, C^i_b, L
- ancillary likelihood functions: $\pi_{G^i_{e\mu}}, \pi_{C^i_b}, \pi_L$
 - = Gaussian distributions for G^i_{μ}, C^i_b, L , in order to take into account uncertainties on these quantities

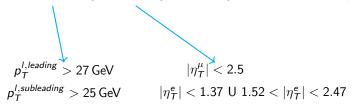

ELE SQR

Image: A math a math

Total cross-section

Fiducial region total cross-section

= kinematic + geometric region with a good and well-known performance

Inclusive total cross-section = in the full phase space

GIU	lia 🛛	Ma	ineri

Substitute i - th bin with the entire fiducial region:

$$N_1^{fid} = \mathcal{L}\sigma_{tar{t}}^{fid} \, G_{e\mu}^{fid} 2\epsilon_b^{fid} (1 - \epsilon_b^{fid} \, C_b^{fid}) + N_{1,bkg}^{fid}$$

$$N_2^{fid} = \mathcal{L}\sigma_{t\bar{t}}^{fid} G_{e\mu}^{fid} (\epsilon_b^{fid})^2 C_b^{fid} + N_{2,bkg}^{fid}$$

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Consider the detector acceptance:

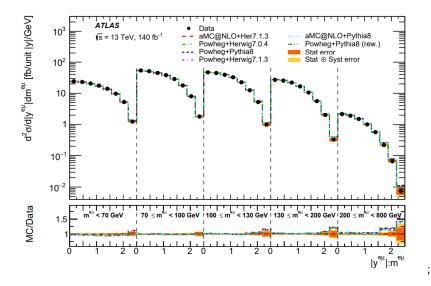
$$\begin{split} N_{1}^{fid} &= \mathcal{L}\sigma_{t\bar{t}}^{incl} E_{e\mu}^{fid} 2\epsilon_{b}^{fid} \left(1 - \epsilon_{b}^{fid} C_{b}^{fid}\right) + N_{1,bkg}^{fid} \\ N_{2}^{fid} &= \mathcal{L}\sigma_{t\bar{t}}^{incl} E_{e\mu}^{fid} (\epsilon_{b}^{fid})^{2} C_{b}^{fid} + N_{2,bkg}^{fid} \end{split}$$

where $E_{e\mu} = A_{e\mu}G_{e\mu}$ and $A_{e\mu} = \frac{N_{e\mu}^{t\bar{t},fid}}{N^{t\bar{t}}}$

- $A_{e\mu}$ acceptance
- $N_{e\mu}^{t\bar{t},fid}$: number of particle-level opposite sign $e\mu$ events in the fiducial region in a simulated $t\bar{t}$ sample
- $N^{t\bar{t}}$: total number of events in the simulated $t\bar{t}$ sample

Image: A math a math

∃ ≥ ≤ √QQ

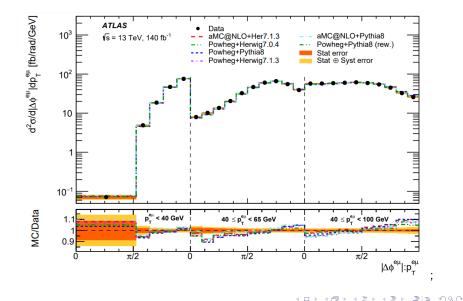


uli			

Dilepton $t\bar{t}$ cross-section

University of Milan 34 / 45

Double differential cross-section: $|y^{e\mu}|$: $m^{e\mu}$

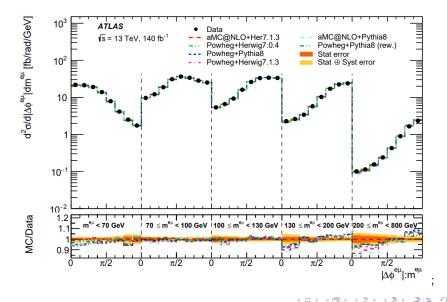

Giulia Maineri

Dilepton tt cross-section

1 University of Milan 35 / 45

3 5

Double differential cross-section: $|\Delta \phi^{e\mu}| : p_T^{e\mu}$

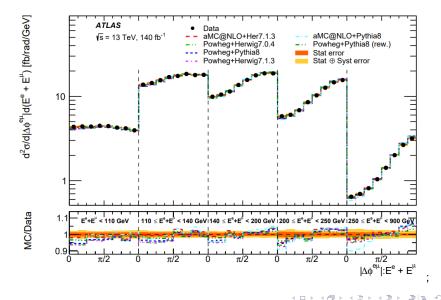

Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan

36 / 45

Double differential cross-section: $|\Delta \phi^{e\mu}|$: $m^{e\mu}$

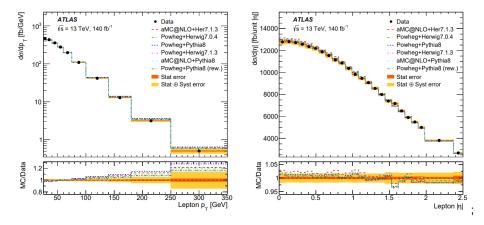


Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan 37 / 45

Double differential cross-section: $|\Delta \phi^{e\mu}| : E^e + E^{\mu}$

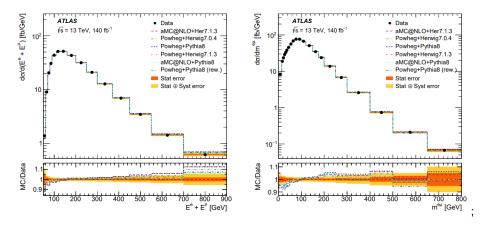


Giulia Maineri

Dilepton $t\bar{t}$ cross-section

University of Milan 38 / 45

Differential cross-section: p_T^l , $|\eta|^l$

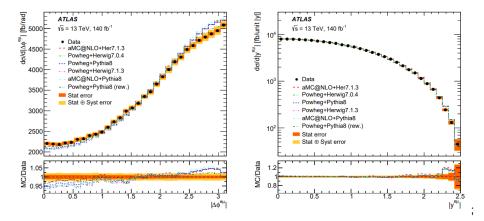


< D > < A >

Dilepton $t\bar{t}$ cross-section

Giulia Maineri

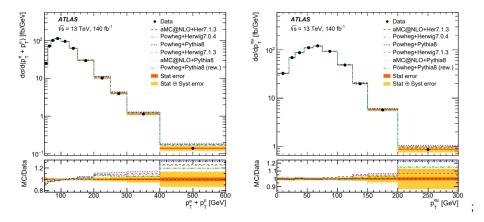
Differential cross-section: $E^e + E^{\mu}$, $m^{e\mu}$


글 늘

< D > < A >

Dilepton $t\bar{t}$ cross-section

Giulia Maineri


Differential cross-section: $|\Delta \phi^{e\mu}|, |y^{e\mu}|$

3 3

Image: A matrix and a matrix

Differential cross-section: $p_T^e + p_T^{\mu}, p_T^{e\mu}$

University of Milan 42 / 45

3 5

Dilepton $t\bar{t}$ cross-section

Giulia Maineri

Total fiducial region cross-section

 $\sigma^{\mathit{fid}}_{tar{t}} = 10.53 \pm 0.02(\mathit{stat}) \pm 0.13(\mathit{syst}) \pm 0.10(\mathit{lumi}) \pm 0.02(\mathit{beam})$ pb

Total inclusive cross-section

 $\sigma_{tar{t}}^{\mathit{fid}} = 829 \pm 1(\mathit{stat}) \pm 13(\mathit{syst}) \pm 8(\mathit{lumi}) \pm 2(\mathit{beam})$ pb

Giulia Maineri

Dilepton $t\bar{t}$ cross-section

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Uncertainties

Source of uncertainty	$\Delta\sigma_{t\bar{t}}^{\mathrm{fid}}/\sigma_{t\bar{t}}^{\mathrm{fid}}$ [%]	$\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ [%]
Data statistics	0.15	0.15
MC statistics	0.04	0.04
Matrix element	0.12	0.16
h _{damp} variation	0.01	0.01
Parton shower	0.08	0.22
$t\bar{t}$ + heavy flavour	0.34	0.34
Top p_T reweighting	0.19	0.58
Parton distribution functions	0.04	0.43
Initial-state radiation	0.11	0.37
Final-state radiation	0.29	0.35
Electron energy scale	0.10	0.10
Electron efficiency	0.37	0.37
Electron isolation (in situ)	0.51	0.51
Muon momentum scale	0.13	0.13
Muon reconstruction efficiency	0.35	0.35
Muon isolation (in situ)	0.33	0.33
Lepton trigger efficiency	0.05	0.05
Vertex association efficiency	0.03	0.03
Jet energy scale & resolution	0.10	0.10
b-tagging efficiency	0.07	0.07
tī/Wt interference	0.37	0.37
Wt cross-section	0.52	0.52
Diboson background	0.34	0.34
$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
Z + jets background	0.05	0.05
Misidentified leptons	0.32	0.32
Beam energy	0.23	0.23
Luminosity	0.93	0.93
Total uncertainty	1.6	1.8

statistic systematic beam energy luminosity dominant

- associated with generators (theoretical assumptions, detector modelling, etc...) → estimated by changing the values of parameters in the simulations or using alternative generators
- background \rightarrow data-driven methods and simulations
- detector-related \rightarrow data-driven, 'up' and 'down' variations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

$$t\bar{t} \rightarrow W^+(\rightarrow l^+ \nu_l) b W^-(\rightarrow l^- \bar{\nu}_l) \bar{b}$$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三</p>

$$t\bar{t}
ightarrow W^+ (
ightarrow l^+
u_l) b W^- (
ightarrow l^- ar{
u}_l) ar{b}$$

• Events reconstruction and events selection are needed to get a sample of events for the analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

$$t\bar{t}
ightarrow W^+ (
ightarrow l^+
u_l) b W^- (
ightarrow l^- ar{
u}_l) ar{b}$$

- Events reconstruction and events selection are needed to get a sample of events for the analysis
- A study of the different processes contributing to **background** has been done, predicting their yields by means of simulations and data-driven techniques

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

$$t\bar{t}
ightarrow W^+ (
ightarrow l^+
u_l) b W^- (
ightarrow l^- ar{
u}_l) ar{b}$$

- Events reconstruction and events selection are needed to get a sample of events for the analysis
- A study of the different processes contributing to **background** has been done, predicting their yields by means of simulations and data-driven techniques
- The **cross-section** of the process has been measured in many ways double differential, differential, total fiducial, total inclusive
 - \rightarrow wider range for differential distributions thanks to larger dataset
 - \rightarrow higher precision thanks to reduced L uncertainty

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

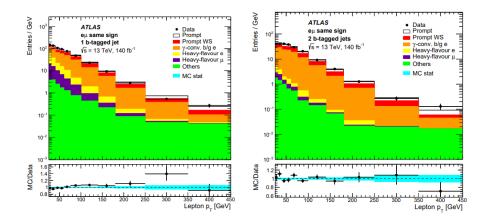
Giu		

Dilepton $t\bar{t}$ cross-section

University of Milan 1/6

シック・目目 (ヨシ (ヨシ (日)) (ロ)

The lepton trigger, reconstruction and selection efficiencies are evaluated both from simulation and with data-driven techniques.


- e.g. lepton isolation requirement
 - **1** selection of $Z \rightarrow I^+I^-$ events
 - ${\it 2}$ selection of opposite sign $e\mu$ events with the isolation requirement applied only to one of the two leptons
 - S the fraction of signal events where the other lepton fails the requirement gives the inefficiency of the isolation requirement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シスペ

- = simulated stable particles without any simulation of the interaction with the detector components
 - compute the reconstruction efficiency $G_{e\mu}^{i} = \frac{N_{MC,sel}^{i}}{N_{MC}^{i}}$
 - compute the fiducial region acceptance $A_{e\mu}=rac{N_{e\mu}^{t\bar{t},\bar{t}d}}{N^{t\bar{t}}}$
 - choose the binning for (double) differential cross-sections such that at least 90% of the events populate the diagonal of the migration matrix

イロト イボト イヨト イヨ

ELE OQO

University of Milan 4 / 6

3 5

Image: A math a math

Dilepton $t\bar{t}$ cross-section

Giulia Maineri

\rightarrow bootstrapping

For each bin i:

- 1 take the data sample, i.e two numbers N_1^i, N_2^i
- ❷ generate a set of 1000 weights $w_k, k \in [0, 1000]$ obtained from fluctuations of a Poisson distribution with $\mu = 1$
- **③** get 1000 pseudo-esperiments by assigning each weight to N_1^i, N_2^i
- do the analysis on the weighted samples and get 1000 values for the cross-section in the i-th bin
- compare the average cross-section over the 1000 values with the values obtained from the simulations to check any possible bias in the analysis

5/6

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

+ Normalized differential and double-differential cross-sections

$$\sigma_{t\bar{t},norm}^{i} = \frac{\sigma_{t\bar{t}}^{i}}{\sum_{j} \sigma_{t\bar{t}}^{j}}$$

pro: large reduction of systematic uncertainties contra: introduction of bin-to-bin correlations

Image: A math a math

EL OQO