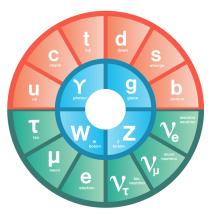
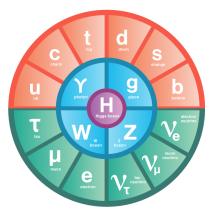
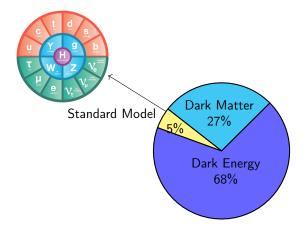
A Boosted Decision Tree approach to the search for dark photons from Higgs boson decays in events with a photon and missing transverse momentum with the ATLAS detector


Tesi di Laurea Triennale in Fisica di: Giulia Maineri

Relatori: Prof. Marcello Fanti, Dott.ssa Silvia Resconi, Dott.ssa Federica Piazza

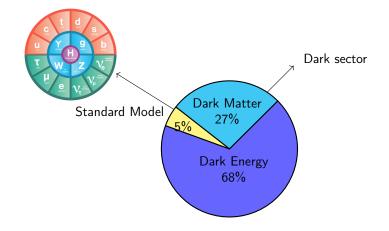

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

Higgs boson discovery at LHC in 2012 completed the Standard Model (SM).


= 990

Higgs boson discovery at LHC in 2012 completed the Standard Model (SM).

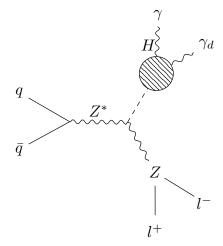
= 990


But Standard Model accounts only for the $\simeq 5\%$ of the mass and energy content of the universe.

A D > <
 A P >
 A

I= nac

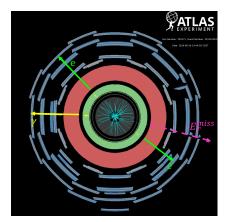
But Standard Model accounts only for the $\simeq 5\%$ of the mass and energy content of the universe.

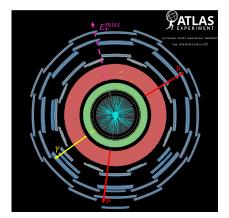


ELE DOG

But Standard Model accounts only for the $\simeq 5\%$ of the mass and energy content of the universe. \implies search for Dark Photons from Higgs boson decays

Signal Region

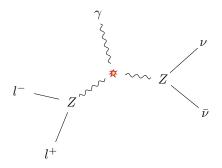



Signal: $Z(\rightarrow l^+l^-)H(\rightarrow \gamma\gamma_d), l \in \{e, \mu\}$

- 1 photon $N_\gamma=1$
- 2 leptons, $N_e=2$ or $N_{\mu}=2$
- 60 GeV $\leq m_{II} \leq 116$ GeV
- missing transverse momentum $E_T^{miss} > 60 \text{ GeV}$

Laurea Triennale in Fisica

Signal Region



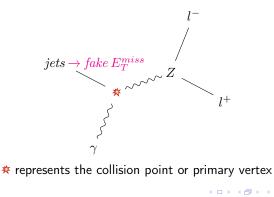
$$\vec{E}_{T}^{miss} = -\left[\sum_{e} \vec{p}_{T}^{(e)} + \sum_{\mu} \vec{p}_{T}^{(\mu)} + \sum_{\gamma} \vec{p}_{T}^{(\gamma)} + \sum_{\tau} \vec{p}_{T}^{(\tau)} + \sum_{jet} \vec{p}_{T}^{(jet)} + \sum_{x} \vec{p}_{T}^{(x)}\right]$$
Citling Mathematical A BDT approach to the search for DPs Laurea Triennale in Fisica 4/14

Backgrounds

Backgrounds:

• irreducible: $VV\gamma$, $V \in \{Z, W\}$

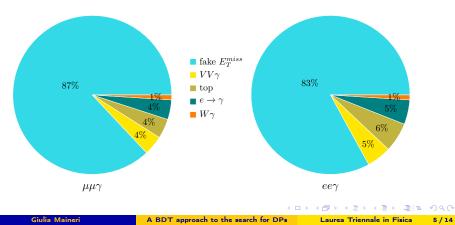
* represents the collision point or primary vertex


ELE SQC

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

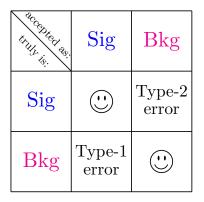
Backgrounds

Backgrounds:

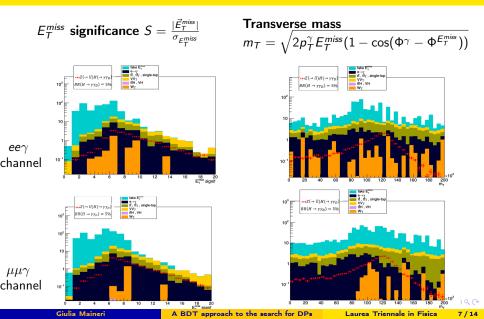

- irreducible: $VV\gamma$, $V \in \{Z, W\}$
- reducible: fake $E_T^{miss}(Z\gamma+\text{jets}, Z+\text{jets}, \text{etc.}), e \to \gamma (VV, VVV, VtII, t\bar{t}VV)$, top backgrounds ($Wt\gamma$, t, $t\bar{t}$, ttV), Higgs ($ttH(\to Z\gamma)$, $VH(\to Z\gamma)$) and $W\gamma$

Backgrounds

Backgrounds:

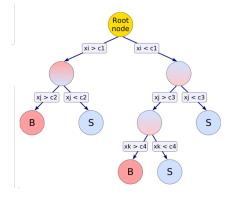

- irreducible: $VV\gamma$, $V \in \{Z, W\}$
- reducible: fake $E_T^{miss}(Z\gamma+\text{jets}, Z+\text{jets}, \text{etc.}), e \rightarrow \gamma (VV, VVV, VtII, t\bar{t}VV)$, top backgrounds ($Wt\gamma$, t, t \bar{t} , ttV), Higgs ($ttH(\rightarrow Z\gamma)$, $VH(\rightarrow Z\gamma)$) and $W\gamma$

MultiVariate Analysis


Different variables distributions can be exploited to separate signal from backgrounds

- \implies MultiVariate Analysis
- \implies Boosted Decision Trees

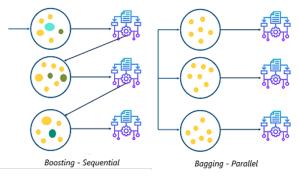
= nac


MultiVariate Analysis

Boosted Decision Tree

Decision Tree

- is a binary tree structured classifier
- can distinguish data of two or more different types
- uses **one** discriminating variable at each node
- ends with leaves when a stopping criterion is fulfilled
- needs to be trained on a known dataset
- needs a known dataset to **test** the performance
- suffers from **instability** due to statistical fluctuations in the training sample


= 200

8/14

Boosted Decision Tree

The sum of weak learners results in a stronger and more stable learner \Longrightarrow Boosting procedure

- generates a **forest** from one single tree
- subsequently modifies the events weights in the sample
- can be done with different **algorithms** (AdaBoost, Gradient Boost + Bagging)

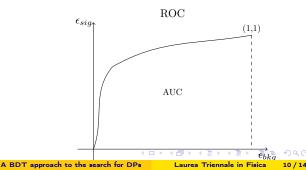
BDTs have been implemented in **2 MVA** environment.

Optimized parameters:

- BoostType
- Bagging
- Learning rate
- Number of folds
- Number of trees
- Separation Index
- Max Depth
- Min Node Size
- Number of cut values

Input features:

9 kinematic variables


Adopted Figures of Merit:

• Approximate Median Significance

$$AMS = \sqrt{2\left[(s+b)\log\left(1+rac{s}{b}
ight)-s
ight]}$$

s=signal yield, b=background yield.

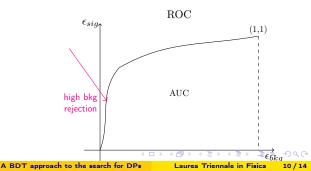
• Receiver Operating Characteristic

Optimized parameters:

- BoostType
- Bagging
- Learning rate
- Number of folds
- Number of trees
- Separation Index
- Max Depth
- Min Node Size
- Number of cut values

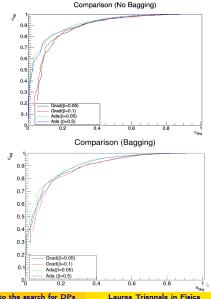
Input features:

9 kinematic variables


Adopted Figures of Merit:

• Approximate Median Significance

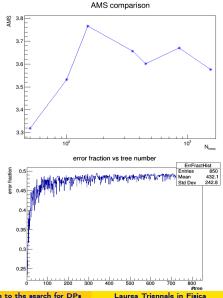
$$AMS = \sqrt{2\left[(s+b)\log\left(1+rac{s}{b}
ight)-s
ight]}$$


s=signal yield, b=background yield.

• Receiver Operating Characteristic

Optimized parameters:

- BoostType : AdaBoost
- Bagging : No
- Learning rate
- Number of folds
- Number of trees
- Separation Index
- Max Depth
- Min Node Size
- Number of cut values



A BDT approach to the search for DPs

10/14

Optimized parameters:

- BoostType : AdaBoost
- Bagging : No
- Learning rate : $\beta = 0.2$
- Number of folds : *Nfolds* = 2
- Number of trees : *Ntrees* = 150
- Separation Index
- Max Depth
- Min Node Size
- Number of cut values

A BDT approach to the search for DPs

10/14

Optimized parameters:

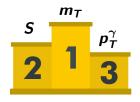
- BoostType : AdaBoost
- Bagging : No
- Learning rate : $\beta = 0.2$
- Number of folds : N folds = 2
- Number of trees : *Ntrees* = 150
- Separation Index : Gini Index
- Max Depth : MaxDepht = 3
- Min Node Size : • MinNodeSize = 5%
- Number of cut values : NCuts = 20

$$G_{Gini} = p(1-p)$$

where purity: $p = \frac{s}{s+h}$

Gain definition	AMS
Gini Index	3.76654
Cross Entropy	3.63069
Misclassification Error	3.61978

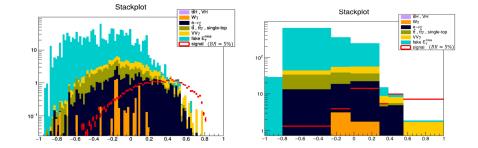
EL OQO


Variable Ranking

Variables have been deleted one at a time to see their contribution to AMS; the least discriminant has been removed at each step.

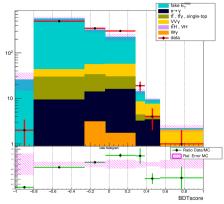
1 Transverse mass
$$m_T \equiv \sqrt{2p_\gamma^T E_T^{miss}(1 - \cos \Delta \Phi(\vec{p}_T^{\gamma}, \vec{E}_T^{miss}))}$$

2 E_T^{miss} significance $S \equiv \frac{E_T^{miss}}{\sigma_{E_T^{miss}}}$
3 Photon transverse momentum p_T^{γ}
4 $p_T^{balance} = \frac{p_T^{\gamma + E_T^{miss}}}{\sigma_T}$


	Dalatice	_	F
4	P_T	=	<i>p</i> ^{<i> </i>} _{<i>T</i>}

variable	AMS	ΔAMS
all	3.36141	
m_T	2.26116	-1.10025
5	2.26925	-1.09216
p_T^{γ}	2.69211	-0.66930
$p_T^{balance}$	3.15523	-0.20618

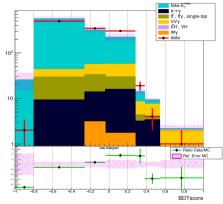
Exclusion limit


BDT score distributions - Monte Carlo

The MC simulations provide weighted events samples and suffer by large statistical fluctuations \implies rebinning to 7 bins to optimize the signal sensitivity

12/14

Log scale


only statistical uncertainties included

• data from Run 2 at ATLAS $(\mathcal{L} = 139 \, \text{fb}^{-1})$

Laurea Triennale in Fisica 13/14

= 990

Log scale

only statistical uncertainties included

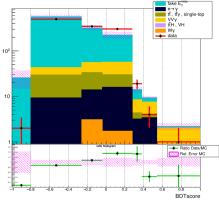
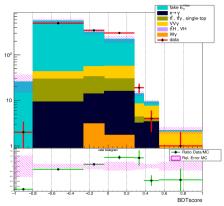

• data from Run 2 at ATLAS $(\mathcal{L} = 139 \, \text{fb}^{-1})$

Image: Image:

• template fit \implies upper limit for $BR(H \rightarrow \gamma \gamma_d)$

EL OQO

Log scale

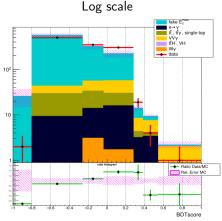

only statistical uncertainties included

- data from Run 2 at ATLAS $(\mathcal{L} = 139 \, \text{fb}^{-1})$
- template fit \implies upper limit for $BR(H \rightarrow \gamma \gamma_d)$
- HistFitter, a tool for statistical analysis used at ATLAS

A D > <
 A P >
 A

ELE NOR

Log scale


only statistical uncertainties included

- data from Run 2 at ATLAS $(\mathcal{L} = 139 \, \text{fb}^{-1})$
- template fit \implies upper limit for $BR(H \rightarrow \gamma \gamma_d)$
- HistFitter, a tool for statistical analysis used at ATLAS

$BR(H \to \gamma \gamma_d)$		
	this analysis	
expected	2.25%	
observed	1.79%	

Laurea Triennale in Fisica 13 / 14

ELE NOR

- data from Run 2 at ATLAS $(\mathcal{L} = 139 \, \text{fb}^{-1})$
- template fit \implies upper limit for $BR(H \rightarrow \gamma \gamma_d)$
- HistFitter, a tool for statistical analysis used at ATLAS

	$BR(H ightarrow \gamma \gamma_d)$	
	this analysis	official ¹
expected	2.25%	2.41%
observed	1.79%	1.87%

only statistical uncertainties included

• An exotic signal with final state $II\gamma + E_T^{miss}$ has been studied.

Laurea Triennale in Fisica 14/14

- An exotic signal with final state $II\gamma + E_T^{miss}$ has been studied.
- The main issue is to increase the sensitivity in signal and **background** distinction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- An exotic signal with final state $II\gamma + E_T^{miss}$ has been studied.
- The main issue is to increase the sensitivity in signal and **background** distinction.
- A MultiVariate Analysis has been performed: Boosted Decision Trees.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

- An exotic signal with final state $II\gamma + E_T^{miss}$ has been studied.
- The main issue is to increase the sensitivity in signal and **background** distinction.
- A MultiVariate Analysis has been performed: Boosted Decision Trees.
- Settings and parameters of the BDT algorithms have been properly **optimized**; the most discriminant input variables have been found.

- An **exotic signal** with final state $II\gamma + E_T^{miss}$ has been studied.
- The main issue is to increase the sensitivity in signal and **background** distinction.
- A MultiVariate Analysis has been performed: Boosted Decision Trees.
- Settings and parameters of the BDT algorithms have been properly **optimized**; the most discriminant input variables have been found.
- A fit to the data in the Signal Region has been performed in order to get the exclusion limit on the branching ratio of the decay H → γγ_d.

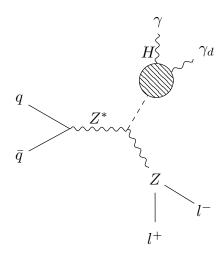
<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

- An exotic signal with final state $II\gamma + E_T^{miss}$ has been studied.
- The main issue is to increase the sensitivity in signal and **background** distinction.
- A MultiVariate Analysis has been performed: Boosted Decision Trees.
- Settings and parameters of the BDT algorithms have been properly **optimized**; the most discriminant input variables have been found.
- A fit to the data in the Signal Region has been performed in order to get the **exclusion limit** on the branching ratio of the decay $H \rightarrow \gamma \gamma_d$.
- Results are consistent with the ones obtained in the official analysis.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

Backup

Giulia Maineri

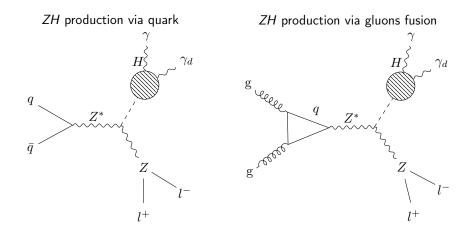

A BDT approach to the search for DPs

ъ Laurea Triennale in Fisica 1/17

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

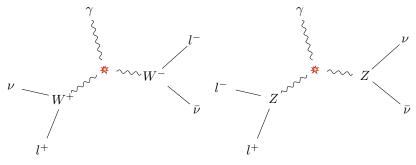
三日 のへの

Signal Region



Signal: $Z(\rightarrow l^+l^-)H(\rightarrow \gamma\gamma_d), l \in \{e, \mu\}$

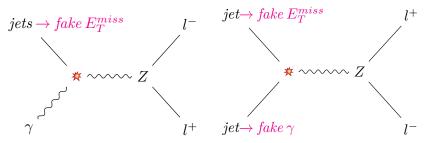
- 1 photon $N_{\gamma} = 1$ with $p_T^{\gamma} > 25 \, \text{GeV}$
- 2 leptons, $N_e=2$ or $N_\mu=2$
 - one leading lepton with $p_T^{l_1} > 27 \text{ GeV}$
 - one subleading lepton with $p_T^{\prime_2} > 20 \, {\rm GeV}$
- 60 GeV $\leq m_{II} \leq 116$ GeV
- *m*_{IIγ} > 100 GeV
- missing transverse momentum $E_T^{miss} > 60 \text{ GeV}$
- $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{\gamma \parallel}) > 2.4$
- *N_{jets}* ≤ 2
- N_{bjets} = 0


Laurea Triennale in Fisica 2/17

= 200

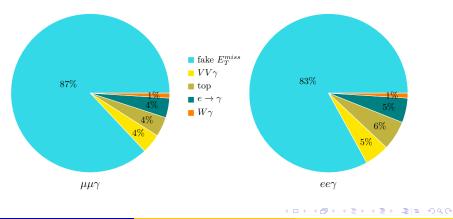
Laurea Triennale in Fisica 3/17

• irreducible: $VV\gamma$, $V \in \{Z, W\}$



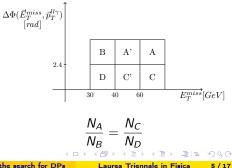
* represents the collision point or primary vertex

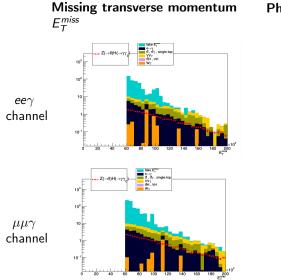
ъ


• irreducible: $VV\gamma$, $V \in \{Z, W\}$

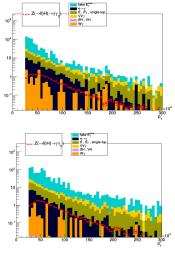
 reducible: fake E^{miss}_T(Zγ+jets, Z+jets, etc.), e → γ (VV, VVV, VtII, ttVV), top backgrounds (Wtγ, t, tt, ttV), Higgs (ttH(→ Zγ), VH(→ Zγ)) and Wγ

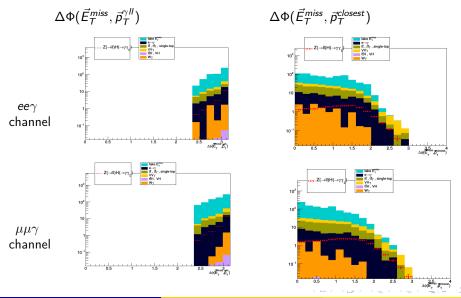
* represents the collision point or primary vertex


- irreducible: $VV\gamma$, $V \in \{Z, W\}$
- reducible: fake $E_T^{miss}(Z\gamma+\text{jets}, Z+\text{jets}, \text{etc.}), e \to \gamma (VV, VVV, VtII, t\bar{t}VV)$, top backgrounds ($Wt\gamma$, t, $t\bar{t}$, ttV), Higgs ($ttH(\to Z\gamma)$, $VH(\to Z\gamma)$) and $W\gamma$

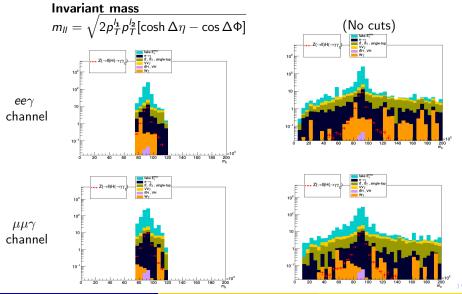


- $VV\gamma$, $V \in \{Z, W\}$: shape from MC and normalization data-driven estimated
- fake E_T^{miss} : shape from MC and normalization data-driven estimated \implies ABCD method
- $e \rightarrow \gamma$: pure data-driven estimates $\implies f_{e \rightarrow \gamma}$ applied to $eee/\mu\mu e$ CRs
- top backgrounds: MC + 20% uncertainty
- Higgs, $W\gamma$: pure MC


ABCD method

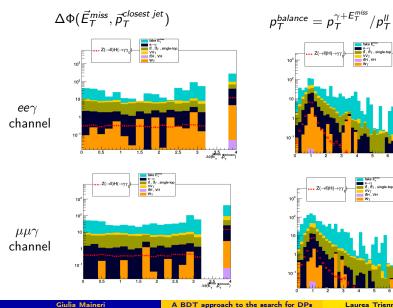

- **1** \vec{E}_T^{miss} and $\Delta \Phi(\vec{E}_T^{miss}, \vec{p}_T^{ll\gamma})$ used to define 6 regions;
- 2 Signal will be mostly located in A; fake \vec{E}_T^{miss} be located between A and B as between C and D;
- Fake *E*^{miss}_T events can be estimated and used to rescale events in Signal Region

Photon transverse momentum p_T^{γ}



Giulia Maineri

A BDT approach to the search for DPs


Laurea Triennale in Fisica 7/17

Giulia Maineri

A BDT approach to the search for DPs

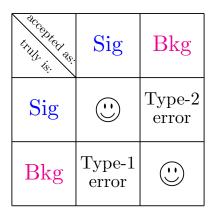
Laurea Triennale in Fisica

Laurea Triennale in Fisica

1900 9/17

/ pⁱ

TMVA Analysis


BDTs have been implemented in .: Tww (a Toolkit for MultiVariate Analysis) environment

- Pre-Analysis
- 2 Training
 - root node
 - 2 one single variable and cut
 - 3 stopping criterion
 - 4 leaf nodes
 - **5** classification according to purity

$$p = \frac{s}{s+b}$$

3 Applying

▲ Overtraining

4 D b 4 6 b

ELE NOR

AdaBoost and Gradient Boost

AdaBoost

• A boost weight *α* is assigned to each new tree:

$$\alpha = \frac{1-E}{E}$$

- The new added tree will focus on events mis-classified by the previous tree
- The boost weight can be given a power β, the learning rate
- The output of the classifier is a weighted sum of DTs votes:

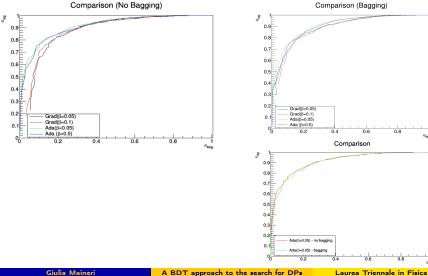
$$y(\vec{x}) = \frac{1}{\sum_{i}^{N_{trees}} \ln (\alpha_i)} \sum_{i}^{N_{trees}} \ln (\alpha_i) h_i(\vec{x})$$

Gradient Boost

• The idea is to approximate the final output as a expansion series of DTs output:

$$F(\vec{x}, P) = \sum_{m=0}^{M} \gamma_m f(x; \alpha_m)$$

$$P \in \{\gamma_m; \alpha_m\}_0^M$$


• The weights *P* are chosen such that $F(\vec{x}, P)$ minimizes the loss function:

$$L(F, y) = \log\left(1 + e^{-2yF(\vec{x})}\right)$$

Laurea Triennale in Fisica 11 / 17

BDT optimization

BoostType

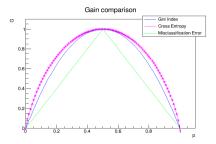
Bagging

BDT optimization

Number of folds

Number of trees

AMS			
N _{trees}	$N_{folds} = 2$	$N_{folds} = 5$	
150	3.76654	3.69253	
850	3.66992	3.64944	

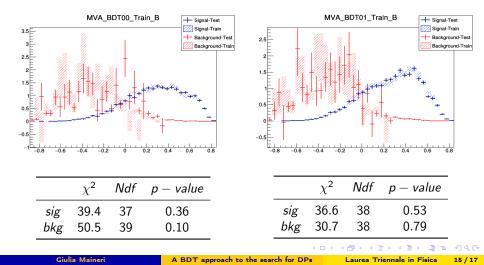

N _{trees}	AMS	
50	3.31854	
100	3.53190	
150	3.76654	
350	3.65642	
450	3.60072	
850	3.66992	
1550	3.57516	

Laurea Triennale in Fisica

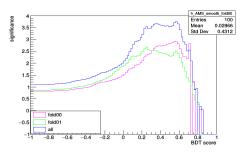
BDT optimization

Separation Index

Gain definition	AMS
Gini Index	3.76654
Cross Entropy	3.63069
Misclassification Error	3.61978

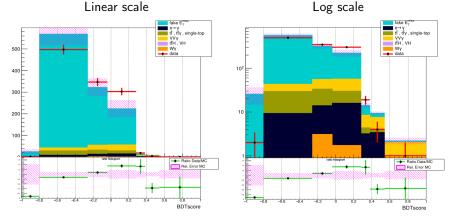

$$G_{Gini} = p(1-p)$$

A BDT approach to the search for DPs


<□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>
 ▲□>

Check overtraining

BDT score distributions for the final configuration (AdaBoost, No Bagging, $\beta = 0.2$, 2 folds, 150 trees, Gini Index)


AMS distributions

The curve is built moving from left to right, cutting step by step the BDT score and taking only the integrals of signal and background distributions at the right of the cut. It starts from 1 at the left (all signal and all background included) and ends at 0 at the right (no signal included).

Laurea Triennale in Fisica 16 / 17

BDT score distributions - Data

only statistical uncertainties included

A BDT approach to the search for DPs

ELE NOR

Image: A matrix